Adobe PDF (2.3 MB)
Brochure
Download
Title Details:
Μαθηματική λογική
Other Titles: Τυπικά συστήματα, τα θεωρήματα του Gödel, θεωρια αποδείξεων
Authors: Koletsos, Georgios
Reviewer: Dimitrakopoulos, Konstantinos
Subject: HUMANITIES AND ARTS > LOGIC AND PHILOSOPHY OF LOGIC
HUMANITIES AND ARTS > LOGIC AND PHILOSOPHY OF LOGIC > LOGIC AND PHILOSOPHY OF LOGIC, MISCELLANEOUS > DEDUCTIVE LOGIC
MATHEMATICS AND COMPUTER SCIENCE > MATHEMATICS > MATHEMATICAL LOGIC AND FOUNDATIONS
MATHEMATICS AND COMPUTER SCIENCE > COMPUTER SCIENCE
MATHEMATICS AND COMPUTER SCIENCE > COMPUTER SCIENCE
Keywords:
Logic Completeness Undecidability Proof Theory Curry-howard Isomorphism
Description:
Abstract:
Η μαθηματική Λογική είναι στενά συνδεδεμένη με τα προγράμματα θεμελίωσης των Μαθηματικών. Το γνωστότερο και συνεκτικότερο από αυτά , το πρόγραμμα του Hilbert, εισήγαγε την έννοια του τυπικού αξιωματικού συστήματος και το ζήτημα της αποκρισιμότητας, δηλαδή τα δύο βασικά θεμέλια των επιστημών της Λογικής και της Πληροφορικής. Στόχος αυτού του προγράμματος ήταν η απόδειξη της συνέπειας των μαθηματικών θεωριών. Ο Gödel, αποδεικνύοντας την αδυναμία υλοποίησης αυτού του στόχου, εισήγαγε τις πρωτογενείς αναδρομικές συναρτήσεις καθώς και τη δυνατότητα των τυπικών συστημάτων να αναφέρονται στον εαυτό τους. Αυτό οδήγησε τον Turing να διατυπώσει το μοντέλο του υπολογισμού και να αποδείξει τα πρώτα αποτελέσματα αναποκρισιμότητας. Εισήχθησαν οι αναδρομικές συναρτήσεις και ξεκαθαρίστηκε το θολό τοπίο του υπολογίσιμου. Η κατάληξη ήταν η δημιουργία, σε θεωρητικό επίπεδο, της επιστήμης της πληροφορικής και ταυτόχρονα η αποφασιστική συμβολή στη θεμελίωση των μαθηματικών και της θεωρίας συνόλων.
Σκοπός του βιβλίου είναι να παρουσιάσει όλα τα κλασικά αποτελέσματα της λογικής τα οποία στη συνέχεια έγιναν απαραίτητα σε κάθε σοβαρή μελέτη των θεμελίων των μαθηματικών και της (θεωρητικής) πληροφορικής. Η έννοια του τυπικού αποδεικτικού συστήματος, η αποδειξιμότητα , η ερμηνεία των τυπικών θεωριών, τα θεωρήματα πληρότητας, αποτελούν αντικείμενα του βιβλίου. Επίσης η μελέτη των αναδρομικών συναρτήσεων και η απόδειξη του θεωρήματος μη πληρότητας του Gödel, το οποίο μετεξελίχθηκε στο αποτέλεσμα αναποκρισιμότητας των Gödel, Turing και Church.
Η θεωρία αποδείξεων, που πήρε την εκλεπτυσμένη της μορφή από τον Gentzen, ενδιαφέρεται όχι μόνον για το τι αποδεικνύεται αλλά και για το πώς αποδεικνύεται. Θα παρουσιαστούν όλα τα μεγάλα αποτελέσματα όπως ο sequent calculus, natural deduction και το περίφημο θεώρημα απαλοιφής των τομών, τα οποία, μέσω της ισομορφίας των αποδείξεων με τα προγράμματα, ουσιαστικά αποτελούν μαθηματική μελέτη της δομής των προγραμμάτων στο χώρο της πληροφορικής.
Linguistic Editors: Toulatou, Dimitra
Technical Editors: Ksystra, Aikaterini
Type: Undergraduate textbook
Creation Date: 2015
Item Details:
ISBN 978-960-603-311-7
License: http://creativecommons.org/licenses/by-nc-nd/3.0/gr
Handle http://hdl.handle.net/11419/2299
Bibliographic Reference: Koletsos, G. (2015). Μαθηματική λογική [Undergraduate textbook]. Kallipos, Open Academic Editions. http://hdl.handle.net/11419/2299
Language: Greek
Consists of: 1. ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ: Εισαγωγή
2. The logic of propositions, propositional calculus
3. First-order predicate calculus
4. Computability, recursive functions
5. Godel's Incompleteness Theorems
6. Gentzen Systems
7. Tableaux systems
8. Lambda calculus and proofs, Curry–Howard isomorphism
9. Proof system
10. Hilbert system
Publication Origin: Kallipos, Open Academic Editions