| Title Details: | |
|
Geometry of Manifolds |
|
| Other Titles: |
Riemannian Manifolds and Lie Groups |
| Authors: |
Arvanitogeorgos, Andreas |
| Reviewer: |
Platis, Ioannis |
| Subject: | MATHEMATICS AND COMPUTER SCIENCE > MATHEMATICS > DIFFERENTIAL GEOMETRY > GLOBAL DIFFERENTIAL GEOMETRY MATHEMATICS AND COMPUTER SCIENCE > MATHEMATICS > TOPOLOGICAL GROUPS, LIE GROUPS > LIE GROUPS MATHEMATICS AND COMPUTER SCIENCE > MATHEMATICS > DIFFERENTIAL GEOMETRY |
| Keywords: |
Differential (smooth) Manifold
Tensor Riemannian Manifold Lie Group Homogeneous Space Klein Geometry |
| Description: | |
| Abstract: |
This book is intended for quite advanced undergraduate students of mathematics and physics, as well as for corresponding postgraduate students. The main topic is the theory of differential manifolds and Riemann manifolds. An effort has been made to present the concepts in a simple way and using examples that are useful to mathematicians and physicists. First, some basic concepts (tangent vector, vector field, differential form) are presented in Euclidean space R^n, in a way that makes it easy and natural to generalize them to the manifolds that follow. The theory of differential (smooth) manifolds is then developed, and before Riemannian manifolds, a reference is made to (k,l)-order tensors. Next, we present the basic points of Lie group theory and immediately apply them to Lie group geometry (left-invariante metrics, curvature, etc.). Finally, as a natural consequence, some elements of the theory of homogeneous spaces (Klein geometry) are presented, i.e., a manifold of the form M = G/K, where G is a Lie group and K is a closed Lie subgroup of G.
|
| Linguistic Editors: |
Gyftopoulou, Ourania |
| Technical Editors: |
Christodoulopoulos, Elias |
| Graphic Editors: |
Statha, Marina |
| Type: |
Undergraduate textbook |
| Creation Date: | 12-10-2015 |
| Item Details: | |
| ISBN |
978-960-603-017-8 |
| License: |
Attribution – NonCommercial – NoDerivatives 4.0 International (CC BY-NC-ND 4.0) |
| DOI | http://dx.doi.org/10.57713/kallipos-879 |
| Handle | http://hdl.handle.net/11419/146 |
| Bibliographic Reference: | Arvanitogeorgos, A. (2015). Geometry of Manifolds [Undergraduate textbook]. Kallipos, Open Academic Editions. https://dx.doi.org/10.57713/kallipos-879 |
| Language: |
Greek |
| Consists of: |
1. The Euclidean Space 2. Smooth manifolds 3. The differential of a smooth map 4. Vector fields 5. Riemannian Manifolds 6. Curvature 7. Lie Groups 8. The structure of a Lie group 9. The geometry of a Lie group 10. Homogeneous spaces - Klein's view of geometry |
| Number of pages |
265 |
| Publication Origin: |
Kallipos, Open Academic Editions |
| You can also view | |
| User comments | |
There are no published comments available! | |
