Τελευταία ενημέρωση: 17-02-2021Adobe PDF (2.39 MB)
HTML έκδοσηZIP (30.94 MB)
Download
Brochure
Download
Title Details:
Θεωρία Galois
Authors: Theochari Apostolidou, Theodora
Charalampous, Chara Myrto Agapi
Reviewer: Kontogeorgis, Aristeidis
Subject: MATHEMATICS AND COMPUTER SCIENCE > MATHEMATICS > FIELD THEORY AND POLYNOMIALS > FIELD EXTENSIONS
MATHEMATICS AND COMPUTER SCIENCE > MATHEMATICS > FIELD THEORY AND POLYNOMIALS > REAL AND COMPLEX FIELDS
MATHEMATICS AND COMPUTER SCIENCE > MATHEMATICS > FIELD THEORY AND POLYNOMIALS > GENERAL FIELD THEORY
Keywords:
Polynomial Rings
Rings Extensions
Automorphisms Of Rings
Galois Extension
Solvability
Constructability
Roots Of Unity
Finite Fields
General Polynomial Of Degree N
Description:
Abstract:
Το βιβλίο αναπτύσσει τη Θεωρία Galois επεκτάσεων σωμάτων.Το βασικό θέμα που αντιμετωπίζει η Θεωρία Galois είναι η επίλυση αλγεβρικών εξισώσεων, δηλ. πολυωνυμικών εξισώσεων. Η θεωρία πολυωνύμων και η εύρεση των ριζών ενός πολυωνύμου αποτελεί ένα μαθηματικό αντικείμενο ευρύτατης χρήσης σε όλους τους κλάδους των μαθηματικών, αλλά και των εφαρμογών τους.
Στο βιβλίο αυτό αναπτύσσεται η θεωρία πολυωνύμων πάνω από ένα σώμα. Η εύρεση των ριζών ενός πολυωνύμου στηρίζεται στη θεωρία επεκτάσεων σωμάτων και κυρίως πεπερασμένης διάστασης επεκτάσεων. Έτσι το επόμενο θέμα που αναπτύσσεται είναι η μελέτη επεκτάσεων σωμάτων και ιδιαίτερα των αλγεβρικών επεκτάσεων. Οι αυτομορφισμοί σωμάτων παίζουν εξαιρετικά σημαντικό ρόλο και η μελέτη τους προηγείται της απόδειξης του Θεμελιώδους Θεωρήματος της Θεωρίας Galois. Η θεωρία πεπερασμένων σωμάτων αναπτύσσεται εκτενώς και δίνονται τρόποι εύρεσης των αναγώγων πολυωνύμων πάνω από τέτοια σώματα.
Στο βιβλίο δίνουμε εφαρμογές της Θεωρίας Galois στην επίλυση πολυωνυμικών εξισώσεων τόσο πάνω από σώματα χαρακτηριστικής μηδέν όσο και πάνω από πεπερασμένα σώματα. Μεταξύ των εφαρμογών της Θεωρίας Galois αναφέρουμε τα κλασικά άλυτα προβλήματα κατασκευασιμότητας με κανόνα και διαβήτη που απασχόλησαν τους εξαιρετικούς αρχαίους Έλληνες μαθηματικούς και φιλοσόφους. Επίσης δίνονται ικανές και αναγκαιίε συνθήκες για την κατασκευασιμότητα κανονικών πολυγώνων.
Η Θεωρία Galois κορυφώνεται με τη θεωρία επιλυσιμότητας, όπου παρέχεται πλήρης πληροφορία για το πότε μπορούν αλγεβρικοί τύποι για την περιγραφή των ριζών ενός πολυωνύμου, δηλ. πότε ένα πολυώνυμο είναι επιλύσιμο με ριζικά
Παρέχουμε την απαιτούμενη θεωρία Ομάδων με πληθώρα παραδειγμάτων. Τέλος αναφερόμαστε στον ρόλο που παίζει η ομάδα μεταθέσεων στην επιλυσιμότητα των πολυωνύμων.
Οι ασκήσεις παίζουν σημαντικό ρόλο στην εμπέδωση της ύλης και παρέχονται εκτενείς υποδείξεις.
Στο τέλος δίνεται εκτενής βιβλιογραφία.
Technical Editors: Karydis, Ioannis
Type: Undergraduate textbook
Creation Date: 2015
Item Details:
ISBN 978-960-603-208-0
License: http://creativecommons.org/licenses/by-nc-nd/3.0/gr
Handle http://hdl.handle.net/11419/731
Bibliographic Reference: Theochari Apostolidou, T., & Charalampous, C. (2015). Θεωρία Galois [Undergraduate textbook]. Kallipos, Open Academic Editions. http://hdl.handle.net/11419/731
Language: Greek
Consists of: 1. Βασικές έννοιες
2. Σώματα και βαθμοί επεκτάσεων
3. Θεμελιώδες Θεώρημα της Θεωρίας Galois
4. Εφαρμογές
5. Παράρτημα. ΘΕΩΡΙΑ GALOIS
6. Πεπερασμένα Σώματα
7. Κυκλοτομικά Πολυώνυμα
8. Απλές Επεκτάσεις και Αλγεβρικές Θήκες
9. Το γενικό πολυώνυμο και το αντίστροφο πρόβλημα
Publication Origin: Kallipos, Open Academic Editions